Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox pathways of the mitochondrion.

Identifieur interne : 000C99 ( Main/Exploration ); précédent : 000C98; suivant : 000D00

Redox pathways of the mitochondrion.

Auteurs : Carla M. Koehler [États-Unis] ; Kristen N. Beverly ; Edward P. Leverich

Source :

RBID : pubmed:16771672

Descripteurs français

English descriptors

Abstract

The mitochondrion houses a variety of redox pathways, utilized for protection from oxidative damage and assembly of the organelle. The glutathione/glutaredoxin and thioredoxin systems function in the mitochondrial matrix. The intermembrane space is protected from oxidative damage via superoxide dismutase and glutathione. Subunits in the cytochrome bc (1) complex utilize disulfide bonds for enzymatic activity, whereas cytochrome oxidase relies on disulfide linkages for copper acquisition. A redox pathway (Mia40p and Erv1p) mediates the import of intermembrane space proteins such as the small Tim proteins, Cox17p, and Cox19p, which have disulfide bonds. Many of the candidate proteins with disulfide bridges possess a twin CX3C motif or CX9C motif and utilize both metal binding and disulfide linkages for function. It may seem surprising that the intermembrane space has developed redox pathways, considering that the buffered environment should be reducing like the cytosol. However, the prokaryotic origin of the mitochondrion suggests that the intermembrane space may be akin to the oxidative environment of the bacterial periplasm. Although the players forming disulfide bonds are not conserved between mitochondria and prokaryotes, the mitochondrion may have maintained redox chemistry as an assembly mechanism in the intermembrane space for the import of proteins and metals and enzymatic activity.

DOI: 10.1089/ars.2006.8.813
PubMed: 16771672


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox pathways of the mitochondrion.</title>
<author>
<name sortKey="Koehler, Carla M" sort="Koehler, Carla M" uniqKey="Koehler C" first="Carla M" last="Koehler">Carla M. Koehler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569, USA. koehler@chem.ucla.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569</wicri:regionArea>
<wicri:noRegion>California 90095-1569</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beverly, Kristen N" sort="Beverly, Kristen N" uniqKey="Beverly K" first="Kristen N" last="Beverly">Kristen N. Beverly</name>
</author>
<author>
<name sortKey="Leverich, Edward P" sort="Leverich, Edward P" uniqKey="Leverich E" first="Edward P" last="Leverich">Edward P. Leverich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006 May-Jun</date>
<idno type="RBID">pubmed:16771672</idno>
<idno type="pmid">16771672</idno>
<idno type="doi">10.1089/ars.2006.8.813</idno>
<idno type="wicri:Area/Main/Corpus">000D42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D42</idno>
<idno type="wicri:Area/Main/Curation">000D42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D42</idno>
<idno type="wicri:Area/Main/Exploration">000D42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox pathways of the mitochondrion.</title>
<author>
<name sortKey="Koehler, Carla M" sort="Koehler, Carla M" uniqKey="Koehler C" first="Carla M" last="Koehler">Carla M. Koehler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569, USA. koehler@chem.ucla.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569</wicri:regionArea>
<wicri:noRegion>California 90095-1569</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beverly, Kristen N" sort="Beverly, Kristen N" uniqKey="Beverly K" first="Kristen N" last="Beverly">Kristen N. Beverly</name>
</author>
<author>
<name sortKey="Leverich, Edward P" sort="Leverich, Edward P" uniqKey="Leverich E" first="Edward P" last="Leverich">Edward P. Leverich</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="ISSN">1523-0864</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Disulfides (chemistry)</term>
<term>Disulfides (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Mitochondria (chemistry)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondria (ultrastructure)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Disulfures (composition chimique)</term>
<term>Disulfures (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Mitochondries (composition chimique)</term>
<term>Mitochondries (métabolisme)</term>
<term>Mitochondries (ultrastructure)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carrier Proteins</term>
<term>Disulfides</term>
<term>Mitochondrial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Mitochondrial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Disulfides</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfures</term>
<term>Mitochondries</term>
<term>Protéines de transport</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de transport</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfures</term>
<term>Mitochondries</term>
<term>Oxidoreductases</term>
<term>Protéines de transport</term>
<term>Protéines mitochondriales</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Biological Transport</term>
<term>Glutaredoxins</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Mitochondries</term>
<term>Motifs d'acides aminés</term>
<term>Oxydoréduction</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mitochondrion houses a variety of redox pathways, utilized for protection from oxidative damage and assembly of the organelle. The glutathione/glutaredoxin and thioredoxin systems function in the mitochondrial matrix. The intermembrane space is protected from oxidative damage via superoxide dismutase and glutathione. Subunits in the cytochrome bc (1) complex utilize disulfide bonds for enzymatic activity, whereas cytochrome oxidase relies on disulfide linkages for copper acquisition. A redox pathway (Mia40p and Erv1p) mediates the import of intermembrane space proteins such as the small Tim proteins, Cox17p, and Cox19p, which have disulfide bonds. Many of the candidate proteins with disulfide bridges possess a twin CX3C motif or CX9C motif and utilize both metal binding and disulfide linkages for function. It may seem surprising that the intermembrane space has developed redox pathways, considering that the buffered environment should be reducing like the cytosol. However, the prokaryotic origin of the mitochondrion suggests that the intermembrane space may be akin to the oxidative environment of the bacterial periplasm. Although the players forming disulfide bonds are not conserved between mitochondria and prokaryotes, the mitochondrion may have maintained redox chemistry as an assembly mechanism in the intermembrane space for the import of proteins and metals and enzymatic activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16771672</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1523-0864</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>5-6</Issue>
<PubDate>
<MedlineDate>2006 May-Jun</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox pathways of the mitochondrion.</ArticleTitle>
<Pagination>
<MedlinePgn>813-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The mitochondrion houses a variety of redox pathways, utilized for protection from oxidative damage and assembly of the organelle. The glutathione/glutaredoxin and thioredoxin systems function in the mitochondrial matrix. The intermembrane space is protected from oxidative damage via superoxide dismutase and glutathione. Subunits in the cytochrome bc (1) complex utilize disulfide bonds for enzymatic activity, whereas cytochrome oxidase relies on disulfide linkages for copper acquisition. A redox pathway (Mia40p and Erv1p) mediates the import of intermembrane space proteins such as the small Tim proteins, Cox17p, and Cox19p, which have disulfide bonds. Many of the candidate proteins with disulfide bridges possess a twin CX3C motif or CX9C motif and utilize both metal binding and disulfide linkages for function. It may seem surprising that the intermembrane space has developed redox pathways, considering that the buffered environment should be reducing like the cytosol. However, the prokaryotic origin of the mitochondrion suggests that the intermembrane space may be akin to the oxidative environment of the bacterial periplasm. Although the players forming disulfide bonds are not conserved between mitochondria and prokaryotes, the mitochondrion may have maintained redox chemistry as an assembly mechanism in the intermembrane space for the import of proteins and metals and enzymatic activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Koehler</LastName>
<ForeName>Carla M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095-1569, USA. koehler@chem.ucla.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beverly</LastName>
<ForeName>Kristen N</ForeName>
<Initials>KN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leverich</LastName>
<ForeName>Edward P</ForeName>
<Initials>EP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM070404</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM070415</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM61721</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Antioxid Redox Signal. 2006 May-Jun;8(5-6):731-3</RefSource>
<PMID Version="1">16771664</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="Y">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="Y">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>89</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16771672</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2006.8.813</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Beverly, Kristen N" sort="Beverly, Kristen N" uniqKey="Beverly K" first="Kristen N" last="Beverly">Kristen N. Beverly</name>
<name sortKey="Leverich, Edward P" sort="Leverich, Edward P" uniqKey="Leverich E" first="Edward P" last="Leverich">Edward P. Leverich</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Koehler, Carla M" sort="Koehler, Carla M" uniqKey="Koehler C" first="Carla M" last="Koehler">Carla M. Koehler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16771672
   |texte=   Redox pathways of the mitochondrion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16771672" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020